The DIY Smart Garden System

I’m going to take you on a tour of Do It Yourself Smart Gardening

My name is Cory, I’m a Technical Craftsman specializing in creative problem solving within electronics and software engineering.  Professionally, I’ve worked as an electronics engineer, a plastics fabricator, software engineer, an industrial laser technician, and, of course, a coffee barista.  I’ve spent the last several years working on a Smart Garden System project I named, hydroMazing.  I’m sharing my work with you because I would like to empower everyone who is interested in a “Smart” approach to gardening.

What we’ve covered so far:cropped-hydromazing_smart_garden_system

 

Are you interested in following me on this journey?

Now that we have an understanding of what it takes to provide an optimum indoor growing environment we can start analyzing the cost-benefit of further optimizing and automating the system.  Please share with friends and follow to receive a notification when I publish the next section.

Section 1:  Let’s start by using an Arduino Nano on an Expansion Board to monitor the indoor gardening environment.  We will measure light intensity, ambient temperature, relative humidity, nutrient/water temperature.

Section 2:  Continue working with the Arduino Nano on an Expansion Board to control appliances in the indoor gardening environment.  We can continue working directly wired or we can start working with wireless communications.  Wired or Wireless?

Section 3:  Add an Arduino Uno using an LCD with Buttons Shield to provide a display and alerts.

Section 4:  Add the Raspberry Pi for remote access, notifications, data collection, and analytics.

Section 5:  More sensors:  moisture probe, pH, E.C., carbon dioxide level, flow-rate, liquid, float (liquid level switch).Peristaltic Pump

Advanced:  Using Dosing/Peristaltic Pumps for Nutrient Solution Management.

Using a Raspberry Pi and USB Camera  Use Raspberry Pi to monitor or collect snapshots of the garden using a USB webcam.

Do It Yourself:  hydroMazing Smart Garden System Kit

Kit includes wired and ready sensors and components for making the Controller Module (Arduino Nano) and Web Services Module (Raspberry Pi)?  Let me know, Contact Cory

Please share with friends and follow to receive a notification when I publish the next section.

Phoenix Fire Lily

Phoenix Fire Lily:  Solar rechargeable battery connected to a flickering LED inside an artificial lily flower residing in a hand-crafted wooden vase.

IMG_20180731_145416444IMG_20180825_170808853lily

I don’t know about you, but I rarely have money to spend on projects and whenever possible reusing and re-purposing junk is ideal.  Many of my projects contain parts I’ve purchased at local dollar stores and items found through eBay.

IMG_20180808_174135637
Discount hackables!!

 

Parts:

  • Artificial Lily Flower
  • Flickering LED
  • Thermostat Wire
  • 100-330ohm Resistor
  • Mini switch
  • Solar-panel ~ 5vDC
  • Rechargeable Li-ion Coin-cell Battery
  • Rechargeable Li-ion Coin-cell Battery charger = TP4056 Mini USB 1A Lithium Battery Charger Module
  • USB to mini USB ~ 5ft. cord
  • Optional ~ hand-crafted vase station

Steps:

IMG_20180826_135523525

  • Cut the end of the stem and remove the wire.

IMG_20180826_135554418

  • Gut the Artificial Lily Flower by removing its pistil.

IMG_20180826_135814012IMG_20180826_134320215

  • Using a 8-10″ length of Thermostat Wire that extends just beyond the end of the lily’s stem, solder a 100-330ohm resistor to flickering LED and/or later near the mini switch inside the recycled case.

Do I really need a resistor?

  • Clear LED without resistor = 30mA @ 3vDC
  • Flickering Yellow LED ~ 6mA @ 3vDC
  • salvaged 10 LED string of lights = 6mA @ 3vDC

 

  • Carefully thread the wired LED through the lily and down her stem.

IMG_20180826_135619996

  • Add a piece of heat-shrink tubing, solder jumper wires, and attach connector header.

IMG_20180826_134646442

  • Solder a set of short jumper wires to the Rechargeable Li-ion Coin-cell Battery charger output.
  • Solder the Rechargeable Li-ion Coin-cell Battery charger output short jumper wires, resistor, to the mini switch and recycled case ( two “AA” batteries ).

IMG_20180826_134721596

IMG_20180826_134731388

  • Solder the coin-cell battery holder to the Rechargeable Li-ion Coin-cell Battery charger
  • Insert the Rechargeable Li-ion Coin-cell Battery into the Rechargeable Li-ion Coin-cell Battery charger.

IMG_20180826_134228643

A look inside the inexpensive battery case.

IMG_20180826_134310725

  • Gut everything from the case!

IMG_20180826_134428371

  • Drill a few holes.  One for the solar panel wires, and the other for USB connector.

IMG_20180826_134806554

  • Solder a simple switching diode, such as 1N4148, to the positive side.
  • Using short jumper wires, solder the Rechargeable Li-ion Coin-cell Battery charger input to the solar panel ~ 5vDC.

IMG_20180826_140031232

  • Insert the switch and wrap wires so they lay flat inside the case.

IMG_20180826_140138221

  • Test the output.
  • Optionally, attach USB to mini USB cord to the charger
  • Store inside a hand-crafted vase station.

IMG_20180731_145416444IMG_20180825_170808853lily

 

You can purchase a completed Phoenix Fire Lily directly from me as a functioning example.

lily base partslily base v2