Setup your own hydroMazing

Setup and Use hydroMazing

  • The Controller ( Arduino Nano Expansion Board with nRF24L01 and DHT sensor ) uses 433MHz Transmitter to send codes to remote-controlled AC Outlets or can connect directly via a transistor, MOSFET, or relay.

 

  • Raspberry Pi Web Services Module ( with nRF24L01 ).

 

  • Optional The Advanced Controller ( Arduino Nano Expansion Board with nRF24L01 and uses 433MHz Transmitter to send codes to remote-controlled AC Outlets or can connect directly via a transistor, MOSFET, or relay.  Supports additional sensors:  E.C., pH, Light Intensity, more floats and flow-rate sensors.

 

  • Optional Web-Camera using Raspberry Pi ( with USB Web-Camera ).

 

  • Optional Zone/Node Controller(s) ( Arduino Pro-Mini with nRF24L01 connects directly via a transistor, MOSFET, or relay.  These units are solar-powered with a battery backup.  Also, supports additional soil-moisture sensors.

 

  • Optional The Monitor (Arduino Nano Expansion Board with nRF24L01 ) connected to an Arduino Uno with LCD w/ Buttons Shield.

Each module requires a standard 5 volts power source such as USB.

Setup hydroMazing

Plug-in appliances to their corresponding remote controlled AC switch units:

  1. Intake Ventilation Fan
  2. Exhaust Ventilation Fan
  3. Humidifier / Other
  4. Heater / Additional Lighting
  5. Pump(s)
  • Install the hydroMazing Controller Unit inside the growing area.
  • Provide power to the controller and monitoring devices.

hydroMazing’s default sensors:

  • DHT ( Temperature and Humidity ) Sensor
  • Dallas Temperature Probe Water Temperature Sensor
  • Flow Rate Sensor
  • Float Switch – Low water level
  • Float Switch – High water level

The hydroMazing controller is designed to operate ventilation fans for air circulation, water pumps, occasionally a humidifier, heaters, or any other appliance that is necessary to maintain an ideal environment for plants to grow.  Monitoring and controlling the system is mostly done for us, but when the hydroMazing needs to alert us to a problem it can by using the Raspberry Pi.

Using float switches:

  1. Top float switch used to indicate vessel is full of liquid.
  2. Middle float switch provides warning or triggers a pump to refill.
  3. Bottom float switch turns off pumps and notifies attendant that vessel is out of liquid.

Using the flow sensor’s data we can determine the flow rate of the liquid being pumped.

Hook Up Your Raspberry Pi

Connecting all your devices to the Raspberry Pi is very easy, but you want to do it in a specific order so it can recognize all your devices when it boots up. First, connect your HDMI cable to your Raspberry Pi and your monitor, then connect your USB devices. If you’re using an ethernet cable to connect to your router, go ahead and connect that as well.  Finally, once everything is connected, go ahead and plug in your power adapter. The Raspberry Pi does not have a power switch, so once you connect the power adapter, it’ll turn on all by itself.

Connect to Your Wi-Fi Network

Connecting to your Wi-Fi network works the same in Raspbian as it does it any modern operating system.

  • Click the network icon (it’s the one with two computers) in the top right corner.
  • Select your Wi-Fi network name, and enter your password.

That’s it, you’re now connected to Wi-Fi. This will work in both the command line and in the graphical interface, so you only need to set it once. If you have an older Pi and you’re using a Wi-Fi adapter like this, the process is the same.

You have several devices connected to your WiFi router, so how can you tell the outside where you are serving-up Raspberry Pi?

Getting Online

The following section assumes you have an updated and upgraded Raspberry Pi 3 or equivalent, and installed L.A.M.P. (Linux.Apache.MySQL.PHP.)  Excellent article for getting started and RaspberryPi.org’s installing LAMP.

You have several devices connected to your WiFi router, so how can you tell the outside where you are serving-up Raspberry Pi?  Let’s get familiar with our router’s advanced settings in your router manufacturer’s configuration tool.  Most home networks use one of these common IP addresses for their gateway to the Internet:

place-wifi-router

You will need to login to your router’s configuration tool.  The username and password should have been assigned at the time of setup.  First, we need to reserve an IP address for our Raspberry Pi to use on a regular basis.  Typically, the router will have a DHCP (Dynamic Host Configuration Protocol) Settings section, List and Bindings, etc.  The Raspberry Pi and all other devices on your LAN should be listed here.  Hopefully, your router will have a somewhat intuitive interface that will make sense as to how to assign an IP address to a device or MAC address.  If all else fails, consult your manufacturer’s instructions.

decapi-slider-raspberry-pi-casenetwork-782707_1280-980x637

The default port for web requests is 80.  You can leave the default unless your Internet Service Provider doesn’t allow port 80.  Next step in your router’s configuration is to have the router forward all incoming requests on port 80 to the Raspberry Pi.  Typically referred to as, Port Forwarding or Port Range Forwarding.  You will want to associate the Raspberry Pi’s IP address so that it will receive all incoming requests on port 80 or whatever port you find most appropriate.  (The most secure web server is one that is not connected to the Internet 😉  The default port for SSL is port 443.  Next step in your router’s configuration is to have the router forward all incoming requests on port 443 to the Raspberry Pi.  Motion Web-Cam Streaming:  The default port for motion is port 8081.  Next step in your router’s configuration is to have the router forward all incoming requests on port 8081 to the Raspberry Pi.

You could also allow Telnet, FTP, SSH, VNC, etc but I do not recommend unless you are familiar with the security risks associated with such services.

Get Yourself A Domain Name

http://www.YOUR_CUSTOM_DOMAIN.ddns.net

Check for the DDNS ( Dynamic Domain Name Service ) Setting in your Router’s advanced configuration settings.  Most routers will support one or more of the following, http://www.dyn.comhttp://www.noip.com, many others search Google for “Dynamic DNS”.  The service will offer the ability to register a domain name to associate with the Dynamic IP address that is assigned to you by your Internet Service Provider.  Typically, your router or a software plugin that you download and install will update the Dynamic DNS service’s database when your assigned IP address changes.

Secure Socket Layer

https://letsencrypt.org/

Let’s Encrypt our connection with the Raspberry Pi.

Install

Rather than apt-get Cerbot, I download the latest version directly from its repo:

sudo git clone https://github.com/certbot/certbot /etc/letsencrypt

Easy SSL through Automation

Certbot has a fairly solid beta-quality Apache plugin, which is supported on many platforms, and automates both obtaining and installing certs:

sudo /etc/letsencrypt/certbot-auto

 

Your domain name for your hydroMazing should now be secure.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s